Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 9: 101736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677848

RESUMO

Molecular communication allows information to be exchanged in environments where electromagnetic waves are prohibited. It employs the exchange of information particles travelling through fluids. The transmitter releases several chemical messengers inside the communication channel, encoding the message it intends to send in an appropriate way. These messengers will be propagated in the communication channel according to the laws that determine their movement in the environment, until they reach the receiver, which then captures their presence and decodes their content. To set up an experiment of molecular communication through liquid, the following are required:•The simulation of the experiment by means of numerical resolution of the differential equations governing the process, in order to select the proper modulation technique.•The synthesis of the carbon nanoparticles to serve as the information nanoparticles.•The arrangement of the bench prototype for the experiments.

2.
Nanoscale ; 12(44): 22386-22397, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33150913

RESUMO

Molecular communication (MoCo) is a new paradigm of bio-inspired communication in which the transport of information occurs through information particles instead of electromagnetic waves. Herein, the enormous potential of nanoparticles in this field is highlighted. The MoCo concept has been extensively modelled both theoretically and computationally within the scientific community, mainly in the field of engineering. We collected the most relevant findings about the implementation of prototypal MoCo platforms by exploiting nanoparticles as informative nanomessengers and herein the theoretical and computational modelling used to design MoCo systems is presented.

3.
Nanoscale ; 12(17): 9817-9823, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32338670

RESUMO

A prototypal molecular Internet of things (IoT) network is reported. Starting from the design of the communication architecture, we have theoretically simulated molecular messenger information exchange by means of fluid-based advection. The objective was to determine the key experimental parameters affecting information storage and transfer efficiency. The first working molecular-IoT prototype, based on a chemical communication network, was then developed. Its selectivity was ensured by employing as many different chemical messengers as networked devices; thus three different carbon nanoparticles, characterized by different fluorescence wavelengths, were employed to ensure an effective communication between three networked actuators.

4.
Phys Chem Chem Phys ; 21(29): 16223-16229, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31298236

RESUMO

Artificial chemical communication is an emerging field of study driven by the need of exchanging information in delicate environments where standard procedures based on electromagnetic waves cannot be used. A non-synchronized artificial chemical communication system, based on a new modulation technique, namely reaction shift keying (RSK), is presented. The RSK implies that the quenchers are injected into the transmitter, the chemical messenger reacts and a chemically modified messenger travels towards the receiver. Encoding of "0" is obtained by means of the emission of a messenger that reaches the receiver once chemically modified. To encode the value "1", the messenger is not subjected to chemical reaction. Fluorescent carbon nanoparticle molecular messengers that exploit the reaction with Cu(ii) ions for signal modulation were synthesized. A prototypal RSK modulated chemical communication system is developed, from simulations of the communication platform to an operating prototypal system.

5.
Nanoscale ; 11(30): 14203-14209, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271403

RESUMO

Herein, supramolecular carbon nanoparticle aggregates were obtained via covalent functionalization of the shell of nanoparticles with triazine and subsequent hydrogen bonding reticulation upon the addition of naphthalene diimide. The resulting reticulated nanoparticles maintained the optical properties required for artificial chemical communication but exhibited a reduced diffusion coefficient, enabling sharper and more intense molecular bit capabilities when employed as chemical messengers. As a result, they are ideal candidates for the transport of information along extended fluid paths. We believe that our results represent a further step towards the understanding and optimization of all the experimental parameters affecting the information transfer efficiency in artificial chemical communication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...